| S.No | Inverse Trigonometric Formulas |
| 1 | sin-1(-x) = -sin-1(x), x ∈ [-1, 1] |
| 2 | cos-1(-x) = π -cos-1(x), x ∈ [-1, 1] |
| 3 | tan-1(-x) = -tan-1(x), x ∈ R |
| 4 | cosec-1(-x) = -cosec-1(x), |x| ≥ 1 |
| 5 | sec-1(-x) = π -sec-1(x), |x| ≥ 1 |
| 6 | cot-1(-x) = π – cot-1(x), x ∈ R |
| 7 | sin-1x + cos-1x = π/2 , x ∈ [-1, 1] |
| 8 | tan-1x + cot-1x = π/2 , x ∈ R |
| 9 | sec-1x + cosec-1x = π/2 ,|x| ≥ 1 |
| 10 | sin-1(1/x) = cosec-1(x), if x ≥ 1 or x ≤ -1 |
| 11 | cos-1(1/x) = sec-1(x), if x ≥ 1 or x ≤ -1 |
| 12 | tan-1(1/x) = cot1(x), x > 0 |
| 13 | tan-1 x + tan-1 y = tan-1((x+y)/(1-xy)), if the value xy < 1 |
| 14 | tan-1 x – tan-1 y = tan-1((x-y)/(1+xy)), if the value xy > -1 |
| 15 | 2 tan-1 x = sin-1(2x/(1+x2)), |x| ≤ 1 |
| 16 | 2tan-1 x = cos-1((1-x2)/(1+x2)), x ≥ 0 |
| 17 | 2tan-1 x = tan-1(2x/(1-x2)), -1<x<1 |
| 18 | 3sin-1x = sin-1(3x-4x3) |
| 19 | 3cos-1x = cos-1(4x3-3x) |
| 20 | 3tan-1x = tan-1((3x-x3)/(1-3x2)) |
| 21 | sin(sin-1(x)) = x, -1≤ x ≤1 |
| 22 | cos(cos-1(x)) = x, -1≤ x ≤1 |
| 23 | tan(tan-1(x)) = x, – ∞ < x < ∞. |
| 24 | cosec(cosec-1(x)) = x, – ∞ < x ≤ 1 or -1 ≤ x < ∞ |
| 25 | sec(sec-1(x)) = x,- ∞ < x ≤ 1 or 1 ≤ x < ∞ |
| 26 | cot(cot-1(x)) = x, – ∞ < x < ∞. |
| 27 | sin-1(sin θ) = θ, -π/2 ≤ θ ≤π/2 |
| 28 | cos-1(cos θ) = θ, 0 ≤ θ ≤ π |
| 29 | tan-1(tan θ) = θ, -π/2 < θ < π/2 |
| 30 | cosec-1(cosec θ) = θ, – π/2 ≤ θ < 0 or 0 < θ ≤ π/2 |
| 31 | sec-1(sec θ) = θ, 0 ≤ θ ≤ π/2 or π/2< θ ≤ π |
| 32 | cot-1(cot θ) = θ, 0 < θ < π |
| 33 | sin−1x+sin−1y=sin−1(x1−y2−−−−−√+y1−x2−−−−−√),ifx,y≥0andx2+y2≤1 |
| 34 | sin−1x+sin−1y=π−sin−1(x1−y2−−−−−√+y1−x2−−−−−√), if x, y ≥ 0 and x2+y2>1. |
| 35 | sin−1x+sin−1y=π−sin−1(x1−y2−−−−−√−y1−x2−−−−−√), if x, y ≥ 0 and x2+y2≤1. |
| 36 | sin−1x+sin−1y=π−sin−1(x1−y2−−−−−√−y1−x2−−−−−√), if x, y ≥ 0 and x2 +y2>1. |
| 37 | cos−1x+cos−1y=cos−1(xy−1−x2−−−−−√1−y2−−−−−√), if x,
y >0 and x2+y2 ≤1.
|
| 38 | cos−1x+cos−1y=π−cos−1(xy−1−x2−−−−−√1−y2−−−−−√), if x, y >0 and x2+y2>1. |
| 39 | cos−1x+cos−1y=cos−1(xy+1−x2−−−−−√1−y2−−−−−√), if x, y > 0 and x2+y2≤1. |
| 40 | cos−1x+cos−1y=π−cos−1(xy+1−x2−−−−−√1−y2−−−−−√),if |
No comments:
Post a Comment