Thursday, January 16, 2020

Calculus unit 1





Formulas

Calculus

Calculus Formulas Logo




Functions and Their Graphs





  • Functions: fgyu
    Argument (independent variable): x
    Set of natural numbers: N
    Set of real numbers: R
    The base of natural logarithms: e
    Natural numbers: n
    Integers: k
    Real numbers: abcd
    Angle: α
    Period of a function: T
    1. The concept of function is one of the most important in mathematics. It is defined as follows. Let two sets X and Y be given. If for every element x in the set X there is exactly one element (an image) y=f(x) in the set Y, then it is said that the function f is defined on the set X. The element x is called the independent variable, and respectively, the output y of the function is called the dependent variable. If we consider the number sets XRYR (where R is the set of real numbers), then the function y=f(x) can be represented as a graph in a Cartesian coordinate system Oxy.
    2. Even function
      f(x)=f(x)
    3. Odd function
      f(x)=f(x)
    4. Periodic function
      f(x+kT)=f(x),
      where k is an integer, T is the period of the function.
    5. Inverse function
      Given a function y=f(x). To find its inverse function of it, it is necessary solve the equation y=f(x) for x and then switch the variables x and y. The inverse function is often denoted as y=f1(x). The graphs of the original and inverse functions are symmetric about the line y=x.
    6. Inverse function
    7. Composite function
      Suppose that a function y=f(u) depends on an intermediate variable u, which in turn is a function of the independent variable xu=g(x). In this case, the relationship between y and x represents a “function of a function” or a composite function, which can be written as y=f(g(x)). The two-layer composite functions can be easily generalized to an arbitrary number of “layers”.
    8. Linear function
      y=ax+b, xR.
      Here the number a is called the slope of the straight line. It is equal to the tangent of the angle between the straight line and the positive direction of the x-axis: a=tanα. The number b is the y-intercept.
    9. Linear function
    10. Quadratic function
      The simplest quadratic function has the form
      y=x2, xR.
      In general, a quadratic function is described by the formula
      y=ax2+bx+c, xR,
      where abc are real numbers (in this case a0.) The graph of a quadratic function is called a parabola. The direction of the branches of the parabola depends on the sign of the coefficient a. If a>0, the parabola is concave upwards. If a<0, the parabola is concave downwards.
    11. Quadratic function
      Quadratic functions at different coefficients a
    12. Cubic function
      The simplest cubic function is given by
      y=x3, xR.
      In general, a cubic function is described by the formula
      y=ax3+bx2+cx+d, xR,
      where abcd are real numbers (a0). The graph of a cubic function is called a cubic parabola. When a>0, the cubic function is increasing, and when a<0, the cubic function is, respectively, decreasing.
    13. Cubic function
    14. Power function
      y=xn, xR, nN.
    15. Power functions for even powers
      Power functions for odd powers
    16. Square root function
      y=x, x[0,).
    17. Square root function
    18. Exponential functions
      y=ax, xR, a>0, a1,
      y=ex when a=e2.71828182846
      An exponential function increases when a>1 and decreases when 0<a<1.
    19. Exponential functions
    20. Logarithmic functions
      y=logax, x(0,), a>0, a1,
      y=lnx, when a=e,x(0,).
      A logarithmic function increases if a>1 and decreases if 0<a<1.
    21. Logarithmic functions
    22. Hyperbolic sine function
      y=sinhx= exex2, xR.
    23. Hyperbolic sine function
    24. Hyperbolic cosine function
      y=coshx= ex+ex2, xR.
    25. Hyperbolic cosine function
    26. Hyperbolic tangent function
      y=tanhx= sinhxcoshx= exexex+ex, xR.
    27. Hyperbolic tangent function
    28. Hyperbolic cotangent function
      y=cothx= coshxsinhx= ex+exexex, xR, x0.
    29. Hyperbolic cotangent function
    30. Hyperbolic secant function
      y=sechx= 1coshx= 2ex+ex, xR.
    31. Hyperbolic secant function
    32. Hyperbolic cosecant function
      y=cschx= 1sinhx= 2exex, xR, x0.
    33. Hyperbolic cosecant function
    34. Inverse hyperbolic sine function
      y=arcsinhx, xR.
    35. Inverse hyperbolic sine function
    36. Inverse hyperbolic cosine function
      y=arccoshx, x[1,).
    37. Inverse hyperbolic cosine function
    38. Inverse hyperbolic tangent function
      y=arctanhx, x(1,1).
    39. Inverse hyperbolic tangent function
    40. Inverse hyperbolic cotangent function
      y=arccothx, x(,1)(1,).
    41. Inverse hyperbolic cotangent function
    42. Inverse hyperbolic secant function
      y=arcsechx, x(0,1].
    43. Inverse hyperbolic secant function
    44. Inverse hyperbolic cosecant function
      y=arccschx, xR,x0.


    No comments:

    Post a Comment

    PERIPHERAL DEVICED IN MLTIMEDIA

    PERIPHERAL DEVICED IN MLTIMEDIA A  peripheral  is a “device that is used to put information into or get information out of the co...